





#### **LEOPARDS IN SOUTH AFRICA**

- Incomplete knowledge of Leopard life history & distribution;
- Difficulties in censusing;
- No data to support sustainable harvesting;
- Illegal killing not recorded;
- Inaccurate Leopard numbers and subpopulations are small & localised;
- Fragmented habitat & distribution;
- Ongoing conflict with farmers;



#### **LEOPARDS IN SOUTH AFRICA**



- Loss of habitat and prey base;
- Perception & incorrect identification (94%) as livestock killer;
- Impact of current Leopard losses is impossible to determine;
- Insufficient ecological information to guide appropriate decisions on Leopard utilisation;
- Poor implementation of current legislation;
- YET, in 2004, South Africa & Namibia had an approved increase in Leopard CITES quotas from 75 – 150 animals pa.

## THE POPULATION & HABITAT VIABILITY ASSESSMENT (PHVA)

- Process developed by the Conservation Breeding Specialist Group (CBSG) of the IUCN Species Survival Commission.
- Powerful tool for developing strategic recovery/ conservation plans for threatened species & their habitats globally.
- Data on population status & trends, distribution, genetics, health status, biology, threats & ecology of the species integrated with estimates of threats like land-use & utilisation patterns.



in Hunseered Wildlife



#### **LEOPARD PHVA APRIL 2005**

- PHVA comprises plenary & working group sessions;
- Established 5 working groups:
  - Population Biology Working Group
  - Habitat & Movement Working Group
  - Conflict Management Working Group
  - Utilisation & Policy Working Group
  - Population Modelling & Dynamics Group
- Each group developed situation overview, problem statements, prioritised solutions / goals & detailed action plans with steps to achieve goals identified.



#### POPULATION MODELLING & DYNAMICS WORKING GROUP

- Developed a stochastic population model for bestguess projections of long-term population viability for leopards in South Africa.
- Tested management scenarios to determine if, where & how increased utilisation quotas can be implemented without risking the survival of individual subpopulations.
- Participants felt input data were not accurate but agreed that modelling could highlight critical problems & provide insight into the species' situation and persistence.



Sered Wildlife

#### **VORTEX SIMULATION MODEL**





- Individual-based, stochastic population model
- Best suited for relatively small, diploid, vertebrate populations
- Used in PVAs for over 150 species
- Simulate life history events, trends, external factors & management actions
- Assess risk of extinction
- Primary threats to population viability
- Relative impacts of alternative management scenarios
- Identify gaps in knowledge



#### **POPULATION VIABILITY ANALYSIS:** Evaluation of Interacting Factors Affecting Population Extinction

Entransecred Wildhite 1.50



#### **VORTEX MODEL TIMELINE**



Increment One Year





#### SIMULATION MODEL RESULTS



Distribution of outcomes across large number of runs (iterations)

- Mean population size
- Trend (population growth or decline)
- Probability of extinction
- Loss of genetic variation

Sample outcome: 15% probability of extinction in 100 years Compare to population goals







#### Population and Habitat Viability Assessment (PHVA)



#### **Topic-based Working Groups**





Development of research and management strategy for the species

Hillingered Wildlife 1.0

| Leopard - C:\Pro                                                  | gram Files\Vortex 9.72\Vortex956 projects\Leopar 💶 💌                                  |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Project Settings Simulation                                       | Input Text Output Graphs and Tables Project Report Leopard - C:\Program Fil           |
| Add Scenario Delete                                               | Scenario < Final Baseline - > Reorder Final Baseline Sustain Ha                       |
| Scenario Settings<br>Species Description<br>Labels and State Vars | Acproductive System                                                                   |
| Dispersal<br>Reproductive System<br>Reproductive Rates            | C Monogamous                                                                          |
| Mortality Rates Catastrophes Mate Monopolization                  | Age of First Offspring for Females     3       Age of First Offspring for Males     4 |
| Initial Population Size<br>Carrying Capacity                      | Population size & carrying capacity                                                   |
| Supplementation<br>Genetic Management                             | Management options                                                                    |
| Conviloput Values from                                            | NOTES:                                                                                |
| Vortex 9.84                                                       | //                                                                                    |

1. 6

#### **BASELINE MODEL PARAMETERS**

- 500 iterations over 100 years
- Age of first offspring: 3 yrs / 4 yrs
- Interbirth interval: 2 years (50% ♀♀ breeding)

angered Wildlife

- Mean litter size: 1.92 cubs (1-4 cubs/litter)
- Maximum age: 12 yrs
- Annual mortality: 40% (juvenile); 10-14% (subadult); 5-7% (adult); 15-20% (10+ years)
- Incorporated inbreeding depression (3.14 LE)
- Incorporated annual environmental variation (20% COV) and demographic stochasticity



#### ATTEMPTS AT DETERMING LEOPARD NUMBERS IN SA

Entransecred Wildhite 1.50

| Martin and de<br>Meulenaer (1988) | 23,472                      | Linking densities with annual rainfall                                     |
|-----------------------------------|-----------------------------|----------------------------------------------------------------------------|
| Norton (1988)                     | 2,390                       | Individual populations for each habitat type                               |
| Bailey (1993)                     | 900                         | Density at 3.5 adults<br>per 100 km <sup>2</sup> , Kruger<br>National Park |
| Friedmann & Daly<br>(2004)        | Between 2,500<br>and 10,000 | For the purposes of assessing IUCN Red List Status only                    |



# TEN SUBPOPULATIONS OF LEOPARDS



Leopard Panthera pardus

- . Greater Kruger Area
- 2. Northern Limpopo Area
- 3. Waterberg & Mpumalanga Area
- 4. Northern KZN
- 5. Kalahari Area
- 6. Orange River
- 7. Western Cape
- 8. Eastern Cape Mountain
- 9. Eastern Cape Valley

10. Wild Coast



#### POPULATION AND CARRYING CAPACITY ESTIMATES FOR THE 10 SUBPOPULATIONS

Entranseered Wildlife Lin

|                        | Est.           | Population | Saturation | Ect               |      |
|------------------------|----------------|------------|------------|-------------------|------|
| Population Area        | Min. Best Max. |            | Level      | K <sub>Best</sub> |      |
| Great Kruger           | 750            | 1200       | 1500       | 100%              | 1200 |
| Northern Limpopo       | 500            | 1250       | 2000       | 80%               | 1563 |
| Waterberg & Mpumalanga | 400            | 850        | 1600       | 80%               | 1063 |
| Northern KwaZulu-Natal | 200            | 400        | 600        | 90%               | 444  |
| Kalahari               | 30             | 50         | 70         | 90%               | 56   |
| Orange River           | 20             | 30         | 60         | 50%               | 60   |
| Western Cape           | 200            | 350        | 600        | 80%               | 438  |
| Eastern Cape Mountain  | 35             | 40         | 80         | 65%               | 62   |
| Eastern Cape Valley    | 30             | 50         | 150        | 70%               | 71   |
| Wild Coast             | 20             | 30         | 120        | 100%              | 30   |
| Total                  | 2185           | 4250       | 6780       | 86%               | 4987 |



#### **LEOPARD REMOVAL / LOSSES**



- Total Leopards lost annually estimated to be 281 (only 61/75 current CITES quota utilised):
  - trophy hunting
  - legal & illegal local hunting
  - removal of problem animals
  - emigration from Greater Kruger & Kalahari populations to Mozambique & Botswana.
- Estimated 28 animals supplementing pop from Mozambique, Zimbabwe & Botswana.



#### ANNUAL HARVEST MODELLED IN EACH SUBPOPULATION

Entranseered Wildlife Lin

|                    |                   | Local Hunting |         |                    |           |       |
|--------------------|-------------------|---------------|---------|--------------------|-----------|-------|
| Population<br>Area | Trophy<br>hunting | Legal         | Illegal | Problem<br>animals | Emigrants | Total |
| Kruger             | 6                 | 0             | 2       | 2                  | 20        | 30    |
| N Limpopo          | 25                | 10            | 40      | 15                 | 0         | 90    |
| Waterbg / Mpl      | 25                | 10            | 40      | 15                 | 0         | 90    |
| KZN                | 5                 | 2             | 20      | 10                 | 0         | 37    |
| Kalahari           | 0                 | 0             | 2       | 0                  | 5         | 7     |
| Orange River       | 0                 | 0             | 2       | 2                  | 0         | 4     |
| Western Cape       | 0                 | 0             | 3       | 4                  | 0         | 7     |
| E Cape Mtn         | 0                 | 0             | 6       | 2                  | 0         | 8     |
| E Cape Valley      | 0                 | 0             | 4       | 2                  | 0         | 6     |
| Wild Coast         | 0                 | 0             | 2       | 0                  | 0         | 2     |
| Total              | 61                | 22            | 121     | 52                 | 25        | 281   |



#### **BASELINE MODEL RESULTS**



- Little loss in numbers or genetic diversity.
- HOWEVER fate of *individual* populations is shaky:
  - 4 populations (Kruger, Limpopo, Western Cape & Kalahari) fare well (PE=0; positive growth; high GD)
  - 4 populations (Waterberg/Mpl, KZN, Orange River & E Capt Mtn) have moderate risk of extinction and reduced population size

• 2 populations (E Cape Valley & Wild Coast) have high risk of extinction, population decline and low GD

 Sensitivity testing suggests that uncertainty in demographic rates only affects viability of those populations with moderate risk



#### **BASELINE FOR 6 DECLINING POPS**



#### Management Options: Development

- Development modelled with estimated loss in K of 15% & increase in illegal harvest of 5%.
- Results indicate increase in PE of local pop from 8% -13% over 100 years & decrease in mean size of surviving pop from 619 to 460.
- Remaining pops & metapop relatively unaffected.
   Management Options: Corridors
- Corridors modelled by doubling dispersal rate. Had little effect on metapop or bigger pops.
- Corridors between Orange River & W Cape & 3 pops of W & E Cape lowers extinction risk of Orange River & E Cape pops.
- Impact of corridors depends on movement through these areas & mortality associated with dispersal.

#### **Management Options:** Removing **Illegal Harvest**



- Eliminating illegal hunting significantly improves persistence of local pops; all have zero risk of extinction in next 100 years.
- Results suggest that even small pops can withstand the removal of occasional problem animals if illegal hunting is eliminated.
- Estimates of illegal hunting are uncertain & efforts to • document and reduce/eliminate illegal Leopard removal are recommended.



#### **Management Options:**

#### **Effect of removing illegal harvest**

Entranseered Wildlife La

|                    | P        | 'Е <sub>100</sub>     | Mean     | Pop. Size             |
|--------------------|----------|-----------------------|----------|-----------------------|
| Population<br>Area | Baseline | No Illegal<br>Harvest | Baseline | No Illegal<br>Harvest |
| Kruger             | 0        | 0                     | 1184     | 1182                  |
| N Limpopo          | 0        | 0                     | 1512     | 1545                  |
| Waterbg / Mp       | 0.08     | 0                     | 619      | 1042                  |
| KwaZulu-Natal      | 0.32     | 0                     | 322      | 436                   |
| Kalahari           | 0        | 0                     | 56       | 56                    |
| Orange River       | 0.25     | 0                     | 50       | 58                    |
| W Cape             | 0        | 0                     | 425      | 429                   |
| E Cape Mountain    | 0.23     | 0                     | 29       | 61                    |
| E Cape Valley      | 0.87     | 0                     | 27       | 69                    |
| Wild Coast         | 0.99     | 0.01                  | 19       | 28                    |
| Metapopulation     | 0        | 0                     | 4025     | 4909                  |

# Management Options: CITES quotas

Quota distribution among populations used in Vortex model

| Population    | Base | 0 | 75 | 90 | 105 | 120 | 135 | 150 |
|---------------|------|---|----|----|-----|-----|-----|-----|
| Kruger        | 6    | 0 | 6  | 8  | 10  | 12  | 14  | 16  |
| N Limpopo     | 25   | 0 | 30 | 36 | 42  | 48  | 54  | 60  |
| Waterbg / Mp  | 25   | 0 | 30 | 36 | 42  | 48  | 54  | 60  |
| KwaZulu-Natal | 5    | 0 | 5  | 6  | 7   | 8   | 9   | 10  |
| E Cape Mtn    | 0    | 0 | 4  | 4  | 4   | 4   | 4   | 4   |
| Total removed | 61   | 0 | 75 | 90 | 105 | 120 | 135 | 150 |

Only tested CITES quota offtake for populations likely to be utilised: Kruger, Limpopo, Waterberg/Mpl, KZN & E Cape CONSERVATION BREEDING

#### **Management Options: CITES quotas**

Throughout range (0 to 150 annually):

- no effect on pops in Kruger, Limpopo, Kalahari & W Cape;
- Limpopo numbers decline slightly;
- Orange River, E Cape Valley & Wild Coast pops relatively unaffected, as no Leopards removed via trophy hunting from these pops;
- E Cape mnts = extinction risk increases from 28% 60% in 100 yrs) with utlisation of 4 permits pa;
- Waterberg/MpI pop increases extinction risk from 16% -25%
- KZN pop increases extinction risk from 11% 62%
- Metapop: 4631 Leopards (0 quota) 3844 Leopards (75 quota) 3196 (150 quota) and drop in saturation from 93% 64%.



Entransered Wildlife





# Effect of sex ratio and inclusion of problem animals in trophy hunting takes on Leopard populations

|                           | Kruger | Limpopo | Water/Mp | KZN  | ECape M | Metapop |  |  |  |
|---------------------------|--------|---------|----------|------|---------|---------|--|--|--|
| PROBABILITY OF EXTINCTION |        |         |          |      |         |         |  |  |  |
| 60% male                  | 0      | 0       | 0.25     | 0.62 | 0.62    | 0       |  |  |  |
| 100% male                 | 0      | 0       | 0.19     | 0.37 | 0.51    | 0       |  |  |  |
| Incl. 30 prob.            | 0      | 0       | 0.24     | 0.14 | 0.59    | 0       |  |  |  |



#### SUSTAINABLE HARVEST FOR LOCAL POPS

- Entimpeered Wildlife Varied annual harvest levels in each pop to estimate max level of harvest that meets pop goals of 0 extinction risk for Kruger, KZN, Kalahari & W Cape populations & PE < 5% for remaining 6 pops.
- Harvest includes loss from all sources outside of normal mortality,
- It is estimated that **absolute max of 350** adult Leopards (53% males) can be removed pa without unacceptable risk to the metapop.
  - Current estimates include annual loss of 77 animals through emigration & problem animal removal, 143 Leopards removed through legal & illegal local hunting, leaving approx 130 available for trophy hunting.
  - Of remaining 130, 61 Leopards are currently taken pa under CITES quota of 75. Thus a maximum of another 69 animals may be hunted before extinction risks becorconservation unacceptable. BREEDING

#### SUSTAINABLE HARVEST FOR LOCAL POPS



The Wildlife Law

- If figure of actual losses is higher the no. of Leopards "available" must be reduced.
- With no off-take through trophy hunting, the metapop size remains relatively stable at current baseline model values.
- Any CITES quota off-takes will result on average in overall pop reduction, through local declines & extinctions.
- Max harvest level emphasises importance of careful selection of the geographic area from which Leopards are harvested.
- Imperative that these figures are treated with caution due to paucity of reliable data.
- Recommended that adequate resources are committed to filling data gaps & modelling revision is undertaken before quota increases are implemented.



#### MEAN METAPOPULATION SIZE WITH CITES QUOTAS



## CONCLUSION

Current estimated rates of Leopard harvest indicate low risk
 of extinction in Kruger, Limpopo, W Cape & Kalahari.

• No risk of extirpation of Leopards from South Africa.

 Pops in Waterberg/Mpl, KZN, Orange River, E Cape Mnt & Valley & Wild Coast are at <u>some risk</u> of extinction

• E Cape Valley & Wild Coast pops are <u>highly vulnerable</u> to extinction in next few decades.

 Strategies to promote persistence of VU 6 pops include natural corridors among adjacent popns & minimizing harvest.

•Some controlled harvest can be sustained without extreme risk to the metapop but data too poor to be exact.

## CONCLUSION



- Max harvest model suggests that MAX additional 69 (MSY) Leopards can be removed from the SA metapop.
- Eliminating illegal hunting positively impacts survival of all local pops, all have zero risk of extinction in next 100 years.
- Improved protection of Leopards may allow increased legal hunting quotas.
- Illegal hunting in all areas must be reduced or stopped.
- Increased pop monitoring & data gathering is imperative to assess the impact of harvesting & allow harvesting rates to be adjusted as needed.
- As better data on Leopard biology & pops become available, models should be revised to better project the impact of harvesting on Leopard populations throughout SA.



### Thank you

STUDY Slesenth Non-protected Loos

14

Subject on the loss of the second

Leopard

Cenerics